IO 模型

IO 模型

在《UNIX网络编程》中介绍了5中I/O模型:阻塞I/O、非阻塞I/O、I/O复用、SIGIO 、异步I/O; Unix的I/O模型,一个输入操作通常包括两个不同的阶段:

  • 等待数据准备好;
  • 从内核向进程复制数据。

对于一个套接字的输入操作,第一步通常涉及等待数据从网络到达,当所等待分组到达时,被复制到内核的某个缓冲区;第二步把数据从内核缓冲区复制到应用进程缓冲区。

网络应用需要处理的无非就是两大类问题,网络IO,数据计算。相对于后者,网络IO的延迟,给应用带来的性能瓶颈大于后者。网络IO的模型大致有如下几种:

  • 阻塞IO(bloking IO)
  • 非阻塞IO(non-blocking IO)
  • 多路复用IO(multiplexing IO)
  • 信号驱动式IO(signal-driven IO)
  • 异步IO(asynchronous IO)

阻塞IO(bloking IO)

同步阻塞 IO 模型是最常用的一个模型,也是最简单的模型。在linux中,默认情况下所有的socket都是blocking。它符合人们最常见的思考逻辑。阻塞就是进程 “被” 休息, CPU处理其它进程去了。

在这个IO模型中,用户空间的应用程序执行一个系统调用(recvform),这会导致应用程序阻塞,什么也不干,直到数据准备好,并且将数据从内核复制到用户进程,最后进程再处理数据,在等待数据到处理数据的两个阶段,整个进程都被阻塞。不能处理别的网络IO。调用应用程序处于一种不再消费 CPU 而只是简单等待响应的状态,因此从处理的角度来看,这是非常有效的。

阻塞IO

当用户进程调用了recv()/recvfrom()这个系统调用,kernel就开始了IO的第一个阶段:准备数据(对于网络IO来说,很多时候数据在一开始还没有到达。比如,还没有收到一个完整的UDP包。这个时候kernel就要等待足够的数据到来)。这个过程需要等待,也就是说数据被拷贝到操作系统内核的缓冲区中是需要一个过程的。而在用户进程这边,整个进程会被阻塞(当然,是进程自己选择的阻塞)。第二个阶段:当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。blocking IO的特点就是在IO执行的两个阶段都被block了

非阻塞IO(non-blocking IO)

同步非阻塞是轮询(polling)方式。在这种模型中,设备是以非阻塞的形式打开的。这意味着 IO 操作不会立即完成,read 操作可能会返回一个错误代码,说明这个命令不能立即满足(EAGAIN 或 EWOULDBLOCK)。

在网络IO时候,非阻塞IO也会进行recvform系统调用,检查数据是否准备好,与阻塞IO不一样,”非阻塞将大的整片时间的阻塞分成N多的小的阻塞, 所以进程不断地有机会 ‘被’ CPU光顾”。

也就是说非阻塞的recvform系统调用调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个error。进程在返回之后,可以干点别的事情,然后再发起recvform系统调用。重复上面的过程,循环往复的进行recvform系统调用。这个过程通常被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。

在linux下,可以通过设置socket使其变为non-blocking。

阻塞IO

当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。

所以,nonblocking IO的特点是用户进程需要不断的主动询问kernel数据好了没有。

多路复用IO(multiplexing IO)

由于同步非阻塞方式需要不断主动轮询,轮询占据了很大一部分过程,轮询会消耗大量的CPU时间,而 “后台” 可能有多个任务在同时进行,人们就想到了循环查询多个任务的完成状态,只要有任何一个任务完成,就去处理它。如果轮询不是进程的用户态,而是有人帮忙就好了。那么这就是所谓的 “IO 多路复用”。UNIX/Linux 下的 select、poll、epoll 就是干这个的(epoll 比 poll、select 效率高,做的事情是一样的)。

IO多路复用有两个特别的系统调用select、poll、epoll函数。select调用是内核级别的,select轮询相对非阻塞的轮询的区别在于—-前者可以等待多个socket,能实现同时对多个IO端口进行监听,当其中任何一个socket的数据准好了,就能返回进行可读,然后进程再进行recvform系统调用,将数据由内核拷贝到用户进程,当然这个过程是阻塞的。select或poll调用之后,会阻塞进程,与blocking IO阻塞不同在于,此时的select不是等到socket数据全部到达再处理, 而是有了一部分数据就会调用用户进程来处理。如何知道有一部分数据到达了呢?监视的事情交给了内核,内核负责数据到达的处理。也可以理解为”非阻塞”吧。

I/O复用模型会用到select、poll、epoll函数,这几个函数也会使进程阻塞,但是和阻塞I/O所不同的的,这两个函数可以同时阻塞多个I/O操作。而且可以同时对多个读操作,多个写操作的I/O函数进行检测,直到有数据可读或可写时(注意不是全部数据可读或可写),才真正调用I/O操作函数。

对于多路复用,也就是轮询多个socket。多路复用既然可以处理多个IO,也就带来了新的问题,多个IO之间的顺序变得不确定了,当然也可以针对不同的编号。

IO复用

IO multiplexing就是我们说的select,poll,epoll,有些地方也称这种IO方式为event driven IO。select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select,poll,epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。

当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。

多路复用的特点是通过一种机制一个进程能同时等待IO文件描述符,内核监视这些文件描述符(套接字描述符),其中的任意一个进入读就绪状态,select, poll,epoll函数就可以返回。对于监视的方式,又可以分为 select, poll, epoll三种方式。

上面的图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。

所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。(select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)

在IO multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。所以IO多路复用是阻塞在select,epoll这样的系统调用之上,而没有阻塞在真正的I/O系统调用如recvfrom之上。

在I/O编程过程中,当需要同时处理多个客户端接入请求时,可以利用多线程I/O或者I/O多路复用技术进行处理。I/O多路复用技术通过把多个I/O的阻塞复用到同一个select的阻塞上,从而使得系统在单线程的情况下可以同时处理多个客户端请求。与传统的多线程/多进程模型比,I/O多路复用的最大优势是系统开销小,系统不需要创建新的额外进程或者线程,也不需要维护这些进程和线程的运行,降底了系统的维护工作量,节省了系统资源,I/O多路复用的主要应用场景如下:

  • 服务器需要同时处理多个处于监听状态或者多个连接状态的套接字。
  • 服务器需要同时处理多种网络协议的套接字。

前面三种IO模式,在用户进程进行系统调用的时候,他们在等待数据到来的时候,处理的方式不一样,直接等待,轮询,select或poll轮询,从整个IO过程来看,他们都是顺序执行的,因此可以归为同步模型(synchronous)。都是进程主动等待且向内核检查状态。

高并发的程序一般使用同步非阻塞方式而非多线程 + 同步阻塞方式。要理解这一点,首先要扯到并发和并行的区别。并发数是指同时进行的任务数(如同时服务的 HTTP 请求),而并行数是可以同时工作的物理资源数量(如 CPU 核数)。通过合理调度任务的不同阶段,并发数可以远远大于并行度,这就是区区几个 CPU 可以支持上万个用户并发请求的奥秘。在这种高并发的情况下,为每个任务(用户请求)创建一个进程或线程的开销非常大。而同步非阻塞方式可以把多个 IO 请求丢到后台去,这就可以在一个进程里服务大量的并发 IO 请求。

信号驱动式IO(signal-driven IO)

信号驱动IO

首先需要开启 socket 信号驱动 IO 功能,并通过系统调用 sigaction 执行一个信号处理函数(非阻塞,立即返回)。当数据就绪时,会为该进程生成一个 SIGIO 信号,通过信号回调通知应用程序调用 recvfrom 来读取数据,并通知主循环喊出处理数据.

信号驱动式IO的特点就是在等待数据ready期间进程不被阻塞,当收到信号通知时再阻塞并拷贝数据。

异步非阻塞 IO(asynchronous IO)

相对于同步IO,异步IO不是顺序执行。用户进程进行aio_read系统调用之后,无论内核数据是否准备好,都会直接返回给用户进程,然后用户态进程可以去做别的事情。等到socket数据准备好了,内核直接复制数据给进程,然后从内核向进程发送通知。IO两个阶段,进程都是非阻塞的。

异步IO的特点是IO执行的两个阶段都由内核去完成,用户进程无需干预,也不会被阻塞。

异步IO

用户进程发起aio_read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal或执行一个基于线程的回调函数来完成这次 IO 处理过程,告诉它read操作完成了。

在 Linux 中,通知的方式是 “信号”:

如果这个进程正在用户态忙着做别的事(例如在计算两个矩阵的乘积),那就强行打断之,调用事先注册的信号处理函数,这个函数可以决定何时以及如何处理这个异步任务。由于信号处理函数是突然闯进来的,因此跟中断处理程序一样,有很多事情是不能做的,因此保险起见,一般是把事件 “登记” 一下放进队列,然后返回该进程原来在做的事。
如果这个进程正在内核态忙着做别的事,例如以同步阻塞方式读写磁盘,那就只好把这个通知挂起来了,等到内核态的事情忙完了,快要回到用户态的时候,再触发信号通知。
如果这个进程现在被挂起了,例如无事可做 sleep 了,那就把这个进程唤醒,下次有 CPU 空闲的时候,就会调度到这个进程,触发信号通知。

IO多路复用之select、poll、epoll

IO 多路复用通过把多个 IO 阻塞复用到同一个 select 的阻塞上,从而使得系统在单线程的情况下,可以同时处理多个 client 请求,与传统的多线程/多进程模型相比,IO 多路复用的最大优势是系统开销小,系统不需要创建新的额外的进程或线程,也不需要维护这些进程和线程的运行,节省了系统资源,IO 多路复用的主要场景如下:

  • 当客户处理多个描述符时(一般是交互式输入和网络套接口),必须使用I/O复用。
  • 当一个客户同时处理多个套接口时,而这种情况是可能的,但很少出现。
  • 如果一个TCP服务器既要处理监听套接口,又要处理已连接套接口,一般也要用到I/O复用。
  • 如果一个服务器即要处理TCP,又要处理UDP,一般要使用I/O复用。
  • 如果一个服务器要处理多个服务或多个协议,一般要使用I/O复用。

目前支持I/O多路复用的系统调用有 select,pselect,poll,epoll,I/O多路复用就是通过一种机制,一个进程可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,pselect,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的。

select

select 目前几乎在所有的平台上支持,其良好跨平台支持也是它的一个优点。

1
int select (int maxfdp1, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
  • 第一个参数maxfdp1指定待测试的描述字个数,它的值是待测试的最大描述字加1,描述字0、1、2…maxfdp1-1均将被测试。
  • 中间的三个参数readset、writeset和exceptset指定我们要让内核测试读、写和异常条件的描述字。如果对某一个的条件不感兴趣,就可以把它设为空指针。struct fd_set可以理解为一个集合,这个集合中存放的是文件描述符. 监视的文件描述符分为三组。
    • 监视 readfds 集合中列出的文件描述符,以查看数据是否可供读取。
    • 监视 writefds 集合中列出的文件描述符,以查看写入操作是否会在不阻塞的情况下完成。
    • 监视 exceptfds 集合中的文件描述符,以查看是否发生了异常,或者带外数据是否可用(这些状态仅适用于套接字)。
  • timeout告知内核等待所指定描述字中的任何一个就绪可花多少时间struct timeval{ long tv_sec; //seconds long tv_usec; //microseconds }。这个参数有三种可能:
    • 永远等待下去:仅在有一个描述字准备好I/O时才返回。为此,把该参数设置为空指针NULL。
    • 等待一段固定时间:在有一个描述字准备好I/O时返回,但是不超过由该参数所指向的timeval结构中指定的秒数和微秒数。
    • 根本不等待:检查描述字后立即返回,这称为轮询。为此,该参数必须指向一个timeval结构,而且其中的定时器值必须为0。

对 select 的调用将阻塞,直到给定的文件描述符准备好执行 I/O,或者直到经过可选的指定超时。给定的集可能为 NULL,在这种情况下,select 不会监视该事件。成功返回后,将修改每个集,使其仅包含准备用于该集所描绘类型的 I/O 的文件描述符。当select函数返回后,可以通过遍历fdset,来找到就绪的描述符。时间复杂度O(n)。

select本质上是通过设置或者检查存放fd标志位的数据结构来进行下一步处理。这样所带来的缺点是:

  • 单个进程可监视的fd数量被限制,即能监听端口的数量有限 单个进程所能打开的最大连接数有FD_SETSIZE宏定义,其大小是32个整数的大小, 每个 fd 由一个位声明(在32位的机器上,大小就是32 *32 ,同理64位机器上FD_SETSIZE为32* 64),当然我们可以对进行修改,然后重新编译内核,但是性能可能会受到影响,这需要进一步的测试 一般该数和系统内存关系很大,具体数目可以cat /proc/sys/fs/file-max察看。32位机默认1024个,64位默认2048个。
  • 对socket进行扫描时是线性扫描,即采用轮询的方法,效率较低,时间复杂度O(n)。。当套接字比较多的时候,每次select()都要通过遍历FD_SETSIZE个Socket来完成调度,不管哪个Socket是活跃的,都遍历一遍。这会浪费很多CPU时间。
  • 需要维护一个用来存放大量fd的数据结构,这样会使得用户空间和内核空间在传递该结构时复制开销大。

poll

1
int poll ( struct pollfd * fds, unsigned int nfds, int timeout);

pollfd结构体定义如下:

1
2
3
4
5
struct pollfd {
int fd; /* 文件描述符 */
short events; /* 等待的事件 */
short revents; /* 实际发生了的事件 */
};

每一个pollfd结构体指定了一个被监视的文件描述符,可以传递多个结构体,指示poll()监视多个文件描述符。每个结构体的events域是监视该文件描述符的事件掩码,由用户来设置这个域。revents域是文件描述符的操作结果事件掩码,内核在调用返回时设置这个域。events域中请求的任何事件都可能在revents域中返回。合法的事件如下:

  • POLLIN: 有数据可读。
  • POLLRDNORM: 有普通数据可读。
  • POLLRDBAND: 有优先数据可读。
  • POLLPRI: 有紧迫数据可读。
  • POLLOUT: 写数据不会导致阻塞。
  • POLLWRNORM: 写普通数据不会导致阻塞。
  • POLLWRBAND: 写优先数据不会导致阻塞。
  • POLLMSGSIGPOLL: 消息可用。

此外,revents域中还可能返回下列事件:

  • POLLER: 指定的文件描述符发生错误。
  • POLLHUP: 指定的文件描述符挂起事件。
  • POLLNVAL: 指定的文件描述符非法。

这些事件在events域中无意义,因为它们在合适的时候总是会从revents中返回。POLLIN | POLLPRI等价于select()的读事件,POLLOUT |POLLWRBAND等价于select()的写事件。POLLIN等价于POLLRDNORM |POLLRDBAND,而POLLOUT则等价于POLLWRNORM。例如,要同时监视一个文件描述符是否可读和可写,我们可以设置 events为POLLIN |POLLOUT。在poll返回时,我们可以检查revents中的标志,对应于文件描述符请求的events结构体。如果POLLIN事件被设置,则文件描述符可以被读取而不阻塞。如果POLLOUT被设置,则文件描述符可以写入而不导致阻塞。这些标志并不是互斥的: 它们可能被同时设置,表示这个文件描述符的读取和写入操作都会正常返回而不阻塞。

timeout参数指定等待的毫秒数,无论I/O是否准备好,poll都会返回。timeout指定为负数值表示无限超时,使poll()一直挂起直到一个指定事件发生;timeout为0指示poll调用立即返回并列出准备好I/O的文件描述符,但并不等待其它的事件。这种情况下,poll()就像它的名字那样,一旦选举出来,立即返回。

成功时,poll()返回结构体中revents域不为0的文件描述符个数;如果在超时前没有任何事件发生,poll()返回0;失败时,poll()返回-1,并设置errno为下列值之一:

  • EBADF: 一个或多个结构体中指定的文件描述符无效。
  • EFAULTfds: 指针指向的地址超出进程的地址空间。
  • EINTR: 请求的事件之前产生一个信号,调用可以重新发起。
  • EINVALnfds:参数超出PLIMIT_NOFILE值。
  • ENOMEM: 可用内存不足,无法完成请求。

poll的机制与select类似,与select在本质上没有多大差别,管理多个描述符也是进行轮询,根据描述符的状态进行处理。但是:

  • poll没有最大文件描述符数量的限制,传递数组指针,而不是像select一样传入所有元素。
  • 使用 select,文件描述符集在返回时会重建,因此每次后续调用都必须重新初始化它们。poll系统调用将输入event字段与输出revents 字段分开,允许数组在不更改的情况下重用。

poll和select同样存在一个缺点就是,包含大量文件描述符的数组被整体复制于用户态和内核的地址空间之间,而不论这些文件描述符是否就绪,它的开销随着文件描述符数量的增加而线性增大。

  • 它将用户传入的数组拷贝到内核空间
  • 然后查询每个fd对应的设备状态:
  • 如果设备就绪 在设备等待队列中加入一项继续遍历
  • 若遍历完所有fd后,都没发现就绪的设备, 挂起当前进程,直到设备就绪或主动超时,被唤醒后它又再次遍历fd。这个过程经历多次无意义的遍历。时间复杂度O(n)。

poll没有最大连接数限制,因其基于链表存储,其缺点:

  • 大量fd数组被整体复制于用户态和内核地址空间间,而不管是否有意义
  • 如果报告了fd后,没有被处理,那么下次poll时会再次报告该fd,这也被称为”水平触发”.

select更易于移植,因为某些 Unix 系统不支持 poll。

从上面看,select和poll都需要在返回后,通过遍历文件描述符来获取已经就绪的socket。事实上,同时连接的大量客户端在一时刻可能只有很少的处于就绪状态,因此随着监视的描述符数量的增长,其效率也会线性下降。

epoll

epoll是在2.6内核中提出的,是之前的select和poll的增强版本。相对于select和poll来说,epoll更加灵活,没有描述符限制。epoll使用一个文件描述符管理多个描述符,将用户关系的文件描述符的事件存放到内核的一个事件表中,这样在用户空间和内核空间的copy只需一次。

epoll操作过程需要三个接口,分别如下:

1
2
3
int epoll_create(int size);
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
  • int epoll_create(int size) ,创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。参数size并不是限制了epoll所能监听的描述符最大个数,只是对内核初始分配内部数据结构的一个建议。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。
  • int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event),epoll的事件注册函数,不像select在监听事件时告诉内核要监听什么类型的事件,epoll在这里先注册要监听的事件类型。
    • 第一个参数是epoll_create()的返回值
    • 第二个参数表示动作,用三个宏来表示:
      • EPOLL_CTL_ADD:注册新的fd到epfd中;
      • EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
      • EPOLL_CTL_DEL:从epfd中删除一个fd;
    • 第三个参数是需要监听的fd
    • 第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
 struct epoll_event {
__uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};

//events可以是以下几个宏的集合:
// EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
// EPOLLOUT:表示对应的文件描述符可以写;
// EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
// EPOLLERR:表示对应的文件描述符发生错误;
//EPOLLHUP:表示对应的文件描述符被挂断;
// EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
//EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里
  • int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout), 等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。

epoll对文件描述符的操作有两种模式:LT(level trigger)和ET(edge trigger)。LT模式是默认模式,LT模式与ET模式的区别如下:

  • LT模式:当epoll_wait检测到描述符事件发生并将此事件通知应用程序,应用程序可以不立即处理该事件。下次调用epoll_wait时,会再次响应应用程序并通知此事件。LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket.在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的。
  • ET模式:当epoll_wait检测到描述符事件发生并将此事件通知应用程序,应用程序必须立即处理该事件。如果不处理,下次调用epoll_wait时,不会再次响应应用程序并通知此事件。ET(edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once)

ET模式在很大程度上减少了epoll事件被重复触发的次数,因此效率要比LT模式高。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死。 当使用epoll的ET模型来工作时,当产生了一个EPOLLIN事件后,读数据的时候需要考虑的是当recv()返回的大小如果等于请求的大小,那么很有可能是缓冲区还有数据未读完,也意味着该次事件还没有处理完,所以还需要再次读取.

epoll的优点:

  • 没有最大并发连接的限制,能打开的FD的上限远大于1024(1G的内存上能监听约10万个端口)。具体数目可以cat /proc/sys/fs/file-max察看,一般来说这个数目和系统内存关系很大。select的最大缺点就是进程打开的fd是有数量限制的。这对 于连接数量比较大的服务器来说根本不能满足。虽然也可以选择多进程的解决方案( Apache就是这样实现的),不过虽然linux上面创建进程的代价比较小,但仍旧是不可忽视的,加上进程间数据同步远比不上线程间同步的高效,所以也不是一种完美的方案。
  • 效率提升,不是轮询的方式,不会随着FD数目的增加效率下降。只有活跃可用的FD才会调用callback函数;即Epoll最大的优点就在于它只管你“活跃”的连接,而跟连接总数无关,因此在实际的网络环境中,活跃socket较少的情况下,使用epoll没有前面两者的线性下降的性能问题,但是所有socket都很活跃的情况下,可能会有性能问题。时间复杂度O(1)。
  • 内存拷贝,利用mmap()文件映射内存加速与内核空间的消息传递;即epoll使用mmap减少复制开销。而select和poll 都需要内核拷贝到用户空间。

在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知。(此处去掉了遍历文件描述符,而是通过监听回调的的机制。这正是epoll的魅力所在。)如果没有大量的idle-connection或者dead-connection,epoll的效率并不会比select/poll高很多,但是当遇到大量的idle-connection,就会发现epoll的效率大大高于select/poll。

epoll 是基于linux的,可移植性最低。

select、poll、epoll区别

类别 select poll epoll
支持的最大连接数 由 FD_SETSIZE 限制 基于链表存储,没有限制 受系统最大句柄数限制
fd 剧增的影响 线性扫描 fd 导致性能很低 同 select 基于 fd 上 callback 实现,没有性能下降的问题
消息传递机制 内核需要将消息传递到用户空间,需要内核拷贝 同 select epoll 通过内核与用户空间共享内存来实现