Rust 所有权
Rust 为了解决内存安全问题,引入了所有权系统。
所有的程序都必须和计算机内存打交道,如何从内存中申请空间来存放程序的运行内容,如何在不需要的时候释放这些空间,成了重中之重,也是所有编程语言设计的难点之一。在计算机语言不断演变过程中,出现了三种流派:
- 垃圾回收机制(GC),在程序运行时不断寻找不再使用的内存,典型代表:Java、Go
- 手动管理内存的分配和释放, 在程序中,通过函数调用的方式来申请和释放内存,典型代表:C++
- 通过所有权来管理内存,编译器在编译时会根据一系列规则进行检查。
Rust 选择了第三种,最妙的是,这种检查只发生在编译期,因此对于程序运行期,不会有任何性能上的损失。
栈(Stack)与堆(Heap)
栈和堆是编程语言最核心的数据结构,栈和堆的核心目标就是为程序在运行时提供可供使用的内存空间。
- 栈按照顺序存储值并以相反顺序取出值,这也被称作后进先出。增加数据叫做进栈,移出数据则叫做出栈。因为上述的实现方式,栈中的所有数据都必须占用已知且固定大小的内存空间,假设数据大小是未知的,那么在取出数据时,你将无法取到你想要的数据。
- 与栈不同,对于大小未知或者可能变化的数据,我们需要将它存储在堆上。当向堆上放入数据时,需要请求一定大小的内存空间。操作系统在堆的某处找到一块足够大的空位,把它标记为已使用,并返回一个表示该位置地址的指针,该过程被称为在堆上分配内存,有时简称为 “分配”(allocating)。接着,该指针会被推入栈中,因为指针的大小是已知且固定的,在后续使用过程中,你将通过栈中的指针,来获取数据在堆上的实际内存位置,进而访问该数据。
在栈上分配内存比在堆上分配内存要快,因为入栈时操作系统无需进行函数调用(或更慢的系统调用)来分配新的空间,只需要将新数据放入栈顶即可。相比之下,在堆上分配内存则需要更多的工作,这是因为操作系统必须首先找到一块足够存放数据的内存空间,接着做一些记录为下一次分配做准备,如果当前进程分配的内存页不足时,还需要进行系统调用来申请更多内存。 因此,处理器在栈上分配数据会比在堆上分配数据更加高效。
当你的代码调用一个函数时,传递给函数的参数(包括可能指向堆上数据的指针和函数的局部变量)依次被压入栈中,当函数调用结束时,这些值将被从栈中按照相反的顺序依次移除。
因为堆上的数据缺乏组织,因此跟踪这些数据何时分配和释放是非常重要的,否则堆上的数据将产生内存泄漏 —— 这些数据将永远无法被回收。这就是 Rust 所有权系统为我们提供的强大保障。
所有权原则
- Rust 中每一个值都被一个变量所拥有,该变量被称为值的所有者
- 一个值同时只能被一个变量所拥有,或者说一个值只能拥有一个所有者
- 当所有者(变量)离开作用域范围时,这个值将被丢弃(drop)
变量作用域
作用域是一个变量在程序中有效的范围,假如有这样一个变量 s 绑定到了一个字符串字面值,该字符串字面值是硬编码到程序代码中的。s 变量从声明的点开始直到当前作用域的结束都是有效的:
1 | { // s 在这里无效,它尚未声明 |
变量绑定背后的数据交互
转移所有权(移动)
先来看一段代码:
1 | let x = 5; |
这段代码并没有发生所有权的转移,原因很简单: 代码首先将 5 绑定到变量 x,接着拷贝 x 的值赋给 y,最终 x 和 y 都等于 5,因为整数是 Rust 基本数据类型,是固定大小的简单值,因此这两个值都是通过自动拷贝的方式来赋值的,都被存在栈中,完全无需在堆上分配内存。
整个过程中的赋值都是通过值拷贝的方式完成(发生在栈中),因此并不需要所有权转移。Rust 基本类型都是通过自动拷贝的方式来赋值的。
然后再来看一段代码:
1 | let s1 = String::from("hello"); |
String 类型是一个复杂类型,由存储在栈中的堆指针、字符串长度、字符串容量共同组成。堆指针指向了一个堆上的空间,这里存储着它的真实数据。
下面对上面代码中的 let s2 = s1 分成两种情况讨论:
- 拷贝 String 和存储在堆上的字节数组,如果该语句是拷贝所有数据(深拷贝),那么无论是 String 本身还是底层的堆上数据,都会被全部拷贝,这对于性能而言会造成非常大的影响
- 只拷贝 String 本身,这样的拷贝非常快,因为在 64 位机器上就拷贝了 8字节的指针、8字节的长度、8字节的容量,总计 24 字节,但是带来了新的问题,还记得我们之前提到的所有权规则吧?其中有一条就是:一个值只允许有一个所有者,而现在这个值(堆上的真实字符串数据)有了两个所有者:s1 和 s2。
假定一个值可以拥有两个所有者,会发生什么呢?
当变量离开作用域后,Rust 会自动调用 drop 函数并清理变量的堆内存。不过由于两个 String 变量指向了同一位置。这就有了一个问题:当 s1 和 s2 离开作用域,它们都会尝试释放相同的内存。这是一个叫做 二次释放(double free) 的错误,也是之前提到过的内存安全性 BUG 之一。两次释放(相同)内存会导致内存污染,它可能会导致潜在的安全漏洞。
因此,Rust 这样解决问题:当 s1 被赋予 s2 后,Rust 认为 s1 不再有效,因此也无需在 s1 离开作用域后 drop 任何东西,这就是把所有权从 s1 转移给了 s2,s1 在被赋予 s2 后就马上失效了。
1 | let s1 = String::from("hello"); |
如果你在其他语言中听说过术语 浅拷贝(shallow copy) 和 深拷贝(deep copy),那么拷贝指针、长度和容量而不拷贝数据听起来就像浅拷贝,但是又因为 Rust 同时使第一个变量 s1 无效了,因此这个操作被称为 移动(move),而不是浅拷贝。

克隆(深拷贝)
Rust 永远也不会自动创建数据的 “深拷贝”。因此,任何自动的复制都不是深拷贝,可以被认为对运行时性能影响较小。如果我们确实需要深度复制 String 中堆上的数据,而不仅仅是栈上的数据,可以使用一个叫做 clone 的方法。
1 | let s1 = String::from("hello"); |
如果代码性能无关紧要,例如初始化程序时或者在某段时间只会执行寥寥数次时,你可以使用 clone 来简化编程。但是对于执行较为频繁的代码(热点路径),使用 clone 会极大的降低程序性能,需要小心使用!
拷贝(浅拷贝)
浅拷贝只发生在栈上,因此性能很高,在日常编程中,浅拷贝无处不在。Rust 有一个叫做 Copy 的特征,可以用在类似整型这样在栈中存储的类型。如果一个类型拥有 Copy 特征,一个旧的变量在被赋值给其他变量后仍然可用,也就是赋值的过程即是拷贝的过程。
那么什么类型是可 Copy 的呢?可以查看给定类型的文档来确认,这里可以给出一个通用的规则:任何基本类型的组合可以 Copy ,不需要分配内存或某种形式资源的类型是可以 Copy 的。如下是一些 Copy 的类型:
- 所有整数类型,比如 u32
- 布尔类型,bool,它的值是 true 和 false
- 所有浮点数类型,比如 f64
- 字符类型,char
- 元组,当且仅当其包含的类型也都是 Copy 的时候。比如,(i32, i32) 是 Copy 的,但 (i32, String) 就不是
- 基础类型的数组,比如
let arr = [0;1000];
- 不可变引用 &T ,但是注意:可变引用 &mut T 是不可以 Copy的
函数传值与返回
将值传递给函数,一样会发生 移动 或者 复制,就跟 let 语句一样,下面的代码展示了所有权、作用域的规则:
1 | fn main() { |
同样的,函数返回值也有所有权。
所有权很强大,避免了内存的不安全性,但是也带来了一个新麻烦: 总是把一个值传来传去来使用它。 传入一个函数,很可能还要从该函数传出去,结果就是语言表达变得非常啰嗦,幸运的是,Rust 提供了新功能解决这个问题。
引用与解引用
常规引用是一个指针类型,指向了对象存储的内存地址。在下面代码中,我们创建一个 i32 值的引用 y,然后使用解引用运算符来解出 y 所使用的值:
1 | fn main() { |
悬垂引用也叫做悬垂指针,意思为指针指向某个值后,这个值被释放掉了,而指针仍然存在,其指向的内存可能不存在任何值或已被其它变量重新使用。在 Rust 中编译器可以确保引用永远也不会变成悬垂状态:当你获取数据的引用后,编译器可以确保数据不会在引用结束前被释放,要想释放数据,必须先停止其引用的使用。
不可变引用
下面的代码,我们用 s1 的引用作为参数传递给 calculate_length 函数,而不是把 s1 的所有权转移给该函数:
1 | fn main() { |
&
符号即是引用,它们允许你使用值,但是不获取所有权,如图所示:

通过 &s1
语法,我们创建了一个指向 s1 的引用,但是并不拥有它。因为并不拥有这个值,当引用离开作用域后,其指向的值也不会被丢弃。正如变量默认不可变一样,引用指向的值默认也是不可变的,不能修改借用的变量。
可变引用
可以通过可变引用来修改借用变量。
1 | fn main() { |
可变引用只能存在一个
可变引用并不是随心所欲、想用就用的,它有一个很大的限制: 同一作用域,特定数据只能有一个可变引用:
1 | let mut s = String::from("hello"); |
这种限制的好处就是使 Rust 在编译期就避免数据竞争,数据竞争可由以下行为造成:
- 两个或更多的指针同时访问同一数据
- 至少有一个指针被用来写入数据
- 没有同步数据访问的机制
数据竞争会导致未定义行为,这种行为很可能超出我们的预期,难以在运行时追踪,并且难以诊断和修复。而 Rust 避免了这种情况的发生,因为它甚至不会编译存在数据竞争的代码!
1 | let mut s = String::from("hello"); |
可变引用与不可变引用不能同时存在
下面的代码会导致一个错误:
1 | let mut s = String::from("hello"); |
注意,引用的作用域 s 从创建开始,一直持续到它最后一次使用的地方,这个跟变量的作用域有所不同,变量的作用域从创建持续到某一个花括号
}
结构体字段
假设有如下结构体:
1 | struct Person { |
参考
- [1] Rust语言圣经